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Abstract
First-principles calculations of the crystal structures, phase transition, and elastic properties of
B1–B2 phase calcium sulfide (CaS) have been carried out with the plane-wave pseudopotential
density functional theory method. The calculated values (for crystal structures and the phase
transition) are in very good agreement with experimental data as well as with some of the
existing model calculations. The dependence of the elastic constants ci j , the aggregate elastic
modulus, the deviation from the Cauchy relation, and the elastic anisotropy on pressure have
been investigated. The normalized elastic constants c′

i j have been introduced to investigate the
elasticity of CaS in detail. Moreover, the variation of the Poisson ratio, Debye temperature, and
longitudinal and transverse elastic wave velocity with pressure P up to 70 GPa at 0 K have been
investigated for the first time.

1. Introduction

The main objective of this work is to investigate systematics
of elasticity and thermodynamic properties using ab initio
results on the phase transition and elastic properties of CaS.
This has further implications than the study of the elastic
constants of CaS. As an excellent luminescent material, CaS
has been considered as an excellent host material for efficient
cathode-ray tube phosphors. Therefore, the knowledge of its
elastic behavior is very important from a device application
point of view. First-principles calculations have been very
successful in predicting the phase stability, elastic properties,
thermodynamic properties and electronic properties [1–7].

As a wide-band-gap semiconductor material, CaS
crystallizes in the rocksalt structure. Wide-band-gap materials

6 Author to whom any correspondence should be addressed.

have enormous potential use in devices capable of operating
at high power level and high temperature because of the need
for optical materials active in the blue–green range. Thus, the
study of CaS is of extreme importance. Up to now, some
theoretical calculations and experimental measurements [8]
have yielded some information on aspects of the structural
properties of the B1–B3 structures [9–13] and the electronic
properties of the B1 structure [14–16]. Cortonay et al
[9] have calculated the structural properties using density
functional theory within the local density approximation. The
structural properties of CaS in the B1–B3 structures have been
investigated using nonspherical symmetric effective potentials
and a local density functional with non-local pseudopotential
calculations by Cortona et al [10] and Camp et al [11].
Luo et al [12] have performed experimental and theoretical
investigations of the structural properties of CaS in the B1 and
B2 structures. Ekbundit and Chizmeshya [13] have studied

0953-8984/08/115203+07$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/11/115203
mailto:g308yd@126.com
http://stacks.iop.org/JPhysCM/20/115203


J. Phys.: Condens. Matter 20 (2008) 115203 Y-D Guo et al

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V
/V

0

Figure 1. Plot of the relative volume V/V0 of CaS versus pressure,
where V0 is the zero-pressure equilibrium primitive cell volume.

the structural properties of CaS in the B1 structure using
three different electron-gas models and the x-ray diffraction
technique. The self-consistent Hartree–Fock method has been
applied to compute the electronic structure of CaS in the B1
structure [14]. The band structure of the B1 phase of CaS has
been calculated using first-principles local density calculations
by Ching et al [15]. Chen et al [16] have investigated the
structural and electronic properties of CaS crystal by using
density functional theory.

From the analysis above, we can see that there has been
little theoretical and experimental effort focusing on the elastic
properties of CaS. Moreover, to the best of our knowledge,
systematics of elastic and thermodynamic properties of CaS
under high pressure have never been fully investigated. Thus,
further theoretical investigations are significantly needed.

2. Theoretical methods

2.1. Elastic properties

Our calculations have been made using the plane-wave pseu-
dopotential density functional theory method, as invoked by
the Cambridge serial total energy package (CASTEP) pro-
gram [17, 18], which allows us to obtain all thermodynam-
ics quantities from the calculated energy–volume points. In
the electronic structure calculations, we have applied the non-
local ultrasoft pseudopotential introduced by Vanderbilt [19],
together with the Perdew–Wang (1991) version (PW91) of
the generalized gradient approximation (GGA) exchange–
correlation function [20]. Meanwhile, a plane-wave basis
set with energy cut-off 500.0 eV has been applied. Pseudo-
atomic calculations have been performed for Ca 3s23p64s2 and
S 3s23p4. For the Brillouin-zone sampling, the 10 × 10 ×
10 Monkhorst–Pack mesh has been used, in which the self-
consistent convergence of the total energy is at 10−6 eV/atom.
All the total energy electronic structure calculations have been
implemented through the CASTEP code.

The total energy E of the B1-type and B2-type CaS has
been calculated at different primitive cell volumes, and then
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Figure 2. Energy as a function of δ for each strain under 39.8 GPa
for the B1 phase CaS.

least-squares fits of these energy–volume (E–V ) data have
been made to the Birch–Murnaghan equation of state (B–M
EOS) [21]. At zero temperature and pressure, the equilibrium
volume V0, the bulk modulus B0, and the pressure derivative
B ′

0 have been estimated by least-squares fitting of calculated
V –E curves to the integrated form of the third-order Birch–
Murnaghan equation of state. The calculated equation of state
of CaS is shown in figure 1.

To calculate the elastic constants under hydrostatic
pressure, we have used the strains as non-volume conserving
because this method is consistent with our calculated elastic
constants using the stress–strain coefficients, which are
appropriate for the calculation of the elastic wave velocities.
The elastic constants ci jkl , with respect to the finite strain
variables are defined as [22–24]

ci jkl =
(

∂σi j(x)

∂ekl

)
X

, (1)

where σi j and ekl are the applied stress and Eulerian strain
tensors, and X and x are the coordinates before and after the
deformation. For the isotropic stress, we have [20–25]

ci jkl = Ci jkl + P

2

(
2δi jδkl − δilδ jk − δikδ jl

)
, (2)

Ci jkl =
(

1

V (x)

∂2 E (x)

∂ei j∂ekl

)
X

, (3)

where Ci jkl denotes the second-order derivatives with respect
to the infinitesimal strain (Eulerian), and δ is the finite strain
variable. The elastic behavior of a completely asymmetric
material is specified by 21 independent elastic constants, while
for an isotropic material, the number is 2. The necessary
number is determined by the symmetry of the materials and
it is 3 for cubic crystal. These independent elastic constants
are usually referred to as c11, c12 and c44. In our calculations,
for all strains, δ = ±0.0006, ±0.000 18, ±0.003 have been
taken to calculate the total energies E for the strained crystal
structure respectively. The calculated E-δ points have been
then fitted to second-order polynomials E(V , δ). In figure 2,
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Table 1. The lattice constants (Å), aggregate elastic modulus (GPa), pressure derivatives of bulk modulus and the elastic constants (GPa) for
the B1 and B2 phases of CaS at T = 0 K and P = 0 GPa.

a0 B0 B ′
0 c11 c12 c44

B1 Present work 5.6899 58.93 4.72 122.59 21.99 33.13
Ref [9] 5.598 65.2 4.1,3.409
Ref [10] 5.6 65.0
Ref [11] 5.4279 63.8 3.9
Ref [13] 5.651 (VIB) 62.3 (VIB) 4.2 (VIB)
Ref [13] 5.645 (SCIB) 67.8 (SCIB) 4.06 (SCIB)
Ref [13] 5.591 (PIB) 72.7 (PIB) 4.15 (PIB)
Ref [16] 5.701 53.79 6.18
Exp [12] 5.689 64.0 4.2
Exp [13] 5.696 52.6 ± 1.4 4.0

56.3 ± 0.6 4.6 ± 0.2
52.4 ± 1.0 4.9 ± 0.2

B2 Present work 3.4753 71.0 4.61 186.50 −1.93 −3.23
Ref [9] 3.409 71.2 4.2
Ref [10] 3.41,3.44 71.0,72.0 6.12
Ref [11] 3.3234 66.4 3.9
Ref [16] 3.482 60.9 5.16
Exp [12] 3.46 64.0 4.2

we have been plotted the E-δ curve of the B1 phase CaS at
39.8 GPa.

Note that under hydrostatic compression, in order to make
comparison with experimental results, the elastic constants Ci j

must be transformed into the observable elastic constants ci j

defined with respect to the finite strain variables [24–27]. Ci j

is transformed into ci j in the case of hydrostatic pressure P as
follows:

c11 = C11, c12 = C12 + P, c44 = C44 − P

2
. (4)

In this work, we have estimated the bulk modulus B and
the shear modulus G for CaS in terms of the following forms:

B = (c11 + 2c12)/3, (5)

G = 1

2

[
c11 − c12 + 3c44

5
+ 5c44(c11 − c12)

4c44 + 3(c11 − c12)

]
. (6)

2.2. Thermodynamic properties

The average wave velocity vm has been approximately
calculated from

vm =
[

1

3

(
2

v3
t

+ 1

v3
l

)]−1/3

, (7)

where vl and vt are the longitudinal and the transverse elastic
wave velocity respectively, which are obtained from Navier’s
equation in the following forms:

vl =
√

3B + 4G

3ρ
, (8)

vt =
√

G

ρ
, (9)

where G is the shear modulus, B is the bulk modulus, and ρ is
the density.

To investigate the Debye temperature of CaS, we have
applied the quasi-harmonic Debye model [28], in which the
non-equilibrium Gibbs function G∗(V ; P, T ) takes the form

G∗(V ; P, T ) = E(V ) + PV + AVib(�(V ); T ), (10)

where �(V ) is the Debye temperature, and the vibrational term
AVib is the Helmholtz free energy for lattice vibrations as given
in the quasi-harmonic Debye model

AVib(�; T ) = nK T

[
9

8

�

T
+ 3 ln(1 − e−�/T ) − D(�/T )

]
,

(11)

where n is the number of atoms per formula unit, and the
Debye integral D(�/T ) can be written as

D(y) = 3

y3

∫ y

0

x3

ex − 1
dx . (12)

For an isotropic solid, � is expressed as

� = h̄

k

[
6π2V 1/2n

]1/3
f (σ )

√
BS

M
, (13)

where M is the molecular mass per formula unit, BS is the
adiabatic bulk modulus, which can be approximated by the
static compressibility [28]

BS ≈ B(V ) = V

(
d2 E(V )

dV 2

)
. (14)

The Poisson ratio σ and f (σ ) [29, 30] can be given in the
following forms:

σ = 3B − 2G

6B + 2G
, (15)

[ f (σ )]3 = 3

[
2

(
2

3

1 + σ

1 − 2σ

)3/2

+
(

1

3

1 + σ

1 − σ

)3/2
]−1

. (16)
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Figure 3. Static elastic constants of CaS as a function of pressure.

3. Results and discussion

In table 1, we have presented the calculated lattice constant
(a0) of the equilibrium volume, the bulk modulus B0 and
its pressure derivative B ′

0 for the B1- and B2-type CaS at
zero temperature and pressure, which are consistent with the
experimental and theoretical results [8–13, 16]. The calculated
elastic constants of the B1- and B2-type CaS have also been
listed in table 1. Although there are no values available to
compare with the elastic constants, our data will be beneficial
to future investigation. Noticeably, the elastic constant c12

equals −1.39 GPa and c44 equals −3.23 GPa for the B2-
type CaS. For cubic crystals, their elastic constants satisfy the
generalized elastic stability criteria under hydrostatic pressure

c11 + 2c12 > 0, c44 > 0, c11 − c12 > 0. (17)

So we can confirm that the mechanical properties of the
B2-type CaS are not stable. That is to say, the B2-type CaS is
unstable at zero temperature and pressure.

In table 2, we have presented the pressure dependence
of the elastic constants ci j and the aggregate elastic modulus
(B, G) of the B1 phase CaS at zero temperature and different
pressures. It has been found that c11 varies substantially
under pressure when compared with the variations in c12 and
c44. The elastic constant c11 represents elasticity in length.
A longitudinal strain produces a change in c11. The elastic
constants c12 and c44 are related to the elasticity in shape,
which is a shear constant. A transverse strain causes a change
in shape without a change in volume. Therefore, c12 and
c44 are less sensitive to pressure as compared with c11. As
pressure increases, c11, c12 and B for the B1 phase CaS at
zero temperature increase monotonically, but c44 decreases
monotonically. The relation of pressure to elastic constants has
been plotted in figure 3. The dependence of the bulk modulus
and the shear modulus for CaS under pressure are shown in
figure 4. In figure 4, we can see that the bulk modulus and the
shear modulus of CaS increase linearly with pressure.

Experiment indicated that the phase transition of CaS from
the B1 phase to the B2 phase occurs at 40 GPa or 37.1 ±

G

B

Figure 4. Bulk and shear modulus of CaS as a function of pressure.

Table 2. The aggregate elastic modulus (GPa), and the elastic
constants (GPa) for the B1 phase of CaS at T = 0 K and P = 0 GPa.

P c11 c12 c44 B G

0 122.59 21.99 33.13 55.52 40.78
10 214.43 33.23 33.02 93.63 52.33
20 306.91 42.29 32.92 130.49 62.34
30 394.18 50.50 31.62 165.06 69.90
35 435.56 55.12 30.74 181.93 72.96
37 452.39 57.44 30.33 189.09 74.09
38 459.90 57.74 30.12 191.79 74.63
39 467.85 58.48 29.90 194.93 75.17
39.8 474.27 59.05 29.70 197.45 75.57
40 475.55 59.01 29.66 197.85 75.67
41 484.16 60.44 29.42 201.68 76.17
42 491.33 60.45 29.17 204.07 76.66
45 514.66 62.49 28.41 213.21 78.08
50 553.28 66.00 26.98 228.42 80.17
60 629.34 73.03 23.48 258.46 83.37
70 702.85 79.15 19.89 287.05 86.13

2.9 GPa [12]. Compared with other results [9–11, 13, 16],
our result (39.8 GPa, which is obtained in figure 5) is in
better agreement with experimental values [12]. In order to
investigate the systematics of elasticity and thermodynamic
properties clearly and in detail, in this work, we have set the
calculated pressure ranges to be wider than the pressure ranges
where the B1 phase is stable. Calculations of the pressure
dependence of the elastic properties for the B2 phase will be
reported in another publication. The approach is seen to be
permitted when we refer to other work [31–33].

We might study theoretically the elasticity of CaS by
means of models which assume that the interatomic forces
have a certain shape and directionality. One common approach
is to assume that the atoms are connected with springs and
that the resulting forces are only in the direction of the
nearest neighbors (central force mode). The deviation from
the Cauchy relation δ = c12 − c44 − 2P is a measure of the
contribution from the noncentral many-body force since the
Cauchy relation c12 = c44 + 2P should be satisfied when
interatomic potentials are purely central. Figure 6 shows the
pressure dependence of δ. The deviation δ becomes larger as

4
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Figure 5. Enthalpy as a function of pressure for the B1 and B2
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Figure 6. The pressure dependence of the Cauchy relation of CaS.

the pressure increases, which proves that the noncentral many-
body force becomes more and more important at high pressure.
Thus, it is necessary to consider the third-order and the fourth-
order elastic constants when the anharmonic properties of CaS
are discussed by means of elastic constants at high pressure.

Figure 7 shows the pressure dependence of the elastic
anisotropic parameter A at the pressure up to 70 GPa, which
is the ratio of two shear moduli c44 and (c11 − c12)/2, and
which becomes unity for isotropic elasticity. It is known
that even the cubic crystal, which is isotropic in structure,
has elastic anisotropy as a result of a fourth-rank tensor
property of elasticity. From figure 7, we can see that the
B1 phase CaS exhibits low elastic anisotropy at zero pressure
and the degree of the anisotropy increases with pressure. The
anisotropy increases when pressure increases, which indicates
that the anisotropy is more obvious under pressure. In order to
investigate elasticity of CaS in detail, we have used normalized
elastic constants c′

i j [30]. The value of c′
i j is obtained by

dividing a specific elastic constant by the bulk modulus

c′
i j = ci j/B = 3ci j/(c11 + 2c12). (18)
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Figure 7. The pressure dependence of the elastic anisotropy of CaS.
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Figure 8. The pressure dependence of the normalized elastic
constants of CaS.

Divided by the bulk modulus, the interatomic forces are
normalized with an average restoring force of the system. At
zero pressure, if a cubic crystal is elastically ideal, namely an
isotropic Cauchy solid, 1.8, 0.6, and 0.6 for c′

11, c′
12, and c′

44
can be found respectively. We have extended the concept of the
normalized elastic constant to the high pressure condition. c′

i j
for CaS as a function of pressure has been plotted in figure 8.
The figure shows that all normalized elastic constants c′

i j , c′
44

and c′
12 decrease slowly with increasing pressure. The values

of c′
12 decrease slowly and the figure shows that the pressure

dependence of c′
12 is almost linear. Comparing with c′

12 and c′
44

under pressure, c′
11 alone increases.

The pressure dependence of the sound velocity, Poisson
ratio, and Debye temperature are shown in figures 9 and 10
respectively. The figures show that the sound velocity,
Poisson ratio, and Debye temperature increase with pressure.
To illustrate the dependence of the longitudinal, transverse
velocity (vl, vt), the Debye temperature (�), and the Poisson
ratio on the applied pressure in detail, we have made a
nonlinear fourth-order polynomial fitting up to 70 GPa. The
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polynomials obtained are

vt(m s−1) = 3837.55 + 27.63P−0.391P2+ 1.36 × 10−3 P3

+ 5.456 × 10−6 P4, (19)

vl (m s−1) = 6366.65 + 105.13P − 1.483P2

+ 1.227 × 10−2 P3 − 4.03 × 10−5 P4, (20)
σ

σ0
= 1.002 62 + 0.033 76P − 8.88 × 10−4 P2

+ 1.261 15 × 10−5 P3 − 6.783 25 × 10−8 P4, (21)
�

�0
= 0.999 61 + 0.013 34P − 1.81 × 10−4 P2

+ 1.25 × 10−6 P3 − 1.9665 × 10−9 P4. (22)

The experimental values of the sound velocity, Poisson
ratio, and Debye temperature under high pressure are not
yet available for comparison, but when we consider the

case of [31–33] (which investigated thermodynamic properties
using high pressure elastic constants agreeing very well with
experimental data), our predicted results should be credible.
It should be pointed out that the significance of this work is
not only in calculating the high pressure elastic constants for
the first time but also in predicting the sound velocity, Poisson
ratio, and Debye temperature for CaS.
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